https://doi.org/10.5194/egusphere-2025-804
Preprint. Discussion started: 5 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

1 Global patterns and drivers of climate-driven fires in a warming

2 world

3

4

5  Hemraj Bhattarai', Maria Val Martin?, Stephen Sitch3, David H. Y. Yung!, Amos P. K. Tai'*
6 ! Department of Earth and Environmental Sciences, Faculty of Science, The Chinese

7  University of Hong Kong, Hong Kong, China

8 2 Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of

9  Sheffield, Sheffield, UK

10 3 Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK

11  *# State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and
12 Sustainability, The Chinese University of Hong Kong, Hong Kong, China

13

14  Correspondence: Amos P. K. Tai (amostai@cuhk.edu.hk), Maria Val Martin
15  (m.valmartin@sheffield.ac.uk)




https://doi.org/10.5194/egusphere-2025-804
Preprint. Discussion started: 5 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

16  Abstract

17  Wildfires increasingly threaten human lives, ecosystems, and climate, yet a comprehensive
18  understanding of the factors driving their future dynamics and emissions remains elusive,
19  hampering mitigation efforts. In this study, we assessed how future climate change would
20  influence global burned area (BA) and carbon emissions between 2015 to 2100. Using the
21  Community Land Model (version 5) with active biogeochemistry and fire, we simulated the
22 effects of climate drivers such as temperature, precipitation, and CO- levels under two future
23  pathways (low warming, SSP1-2.6, and high warming, SSP3-7.0). Our model reproduces
24 historical BA magnitude and spatial distribution, projecting a global BA increase of +6400 km?
25  yr'under SSP1-2.6 and +7500 km? yr~! under SSP3-7.0. While tropical regions remain nearly
26  stable, boreal regions experience the most significant rise, with BA increasing by +5200 km?
27  yr7!in SSP1-2.6 and +8500 km? yr~! in SSP3-7.0, an overall increase of 200%. This rise is
28  accompanied by increased carbon emissions of +4 Tg yr~!and +7 Tg yr~' under SSP1-2.6 and
29  SSP3-7.0, respectively. The main drivers of these changes are reduced soil moisture and
30 increased fuel supply (i.e., vegetation carbon) under a warming climate, with CO, fertilization
31  enhancing biomass growth and further contributing to higher fire risks. These findings
32 underscore the need for integrating climate-driven wildfire dynamics into global management

33  and policy frameworks to mitigate future fire-related threats.
34
35 Keywords:

36  Wildfires, Burned Area (BA), Carbon Emissions, Climate Change, Community land model
37 (CLM5)
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38 1. Introduction

39  Wildfires, known for their unplanned and rapid spread, have profound and wide-ranging
40  impacts, from threatening human welfare and infrastructure to altering ecosystems and

41  contributing to global climate dynamics (Li et al., 2017; Bowman et al., 2020). These events

42  cause devastation through combustion and release of vast amounts of chemically and

43  radiatively active gases and aerosols into the atmosphere (Andreae and Merlet, 2001,

44  Bowman etal., 2009; Coen et al., 2013; Liu et al., 2019; Tang et al., 2022; Zhang et al., 2022;

45  Bhattarai et al., 2024). Annually, wildfires consume millions of square kilometers of land,

46  shaping natural forest successions while disrupting ecological equilibria (Wright and

47  Heinselman, 2014). Recent estimates on Global Fire Emissions Database version five (GFEDS5)
48  shows a declining trend (1.21% yr™') of global annual burned area (BA) from 2001 to 2020,
49  with a 20-year average BA of 7.74 million km? yr~!, which is around 5.9% of ice free land

50 (Chen et al., 2023). Such decline is primarily driven by reduced BA in savannas, mainly due

51  toagricultural expansion and intensification (Andela et al., 2017). However, BA trends largely

52  vary with region, where the boreal region experiences an increasing trend (2.5% yr™!), while
53  most other regions show reductions by up to 2.7% yr~!. BA declines over vast grasslands but
54  increases in small forested areas, resulting in a sharp overall reduction in BA, while carbon
55  emissions remain nearly stable, as forests emit more carbon per unit area than grasslands,

56  offsetting the decline in emissions (Zheng et al., 2021). Long-term analysis indicates that

57  climate change may exacerbate BA trends, substantially increasing carbon emissions from the

58  biosphere and amplifying disruptions to the global carbon cycle (Van Der Werf et al., 2010;

59  Burton et al., 2024; Jones et al., 2024).

60  The socioeconomic impacts of wildfires are also substantial (Kochi et al., 2010; Tymstra et

61 al., 2020). For instance, the 2019/2020 Australian wildfires resulted in nearly $100 billion of

62  economic losses including firefighting costs and damage to infrastructure, business, and

63  wildlife (Roach, 2020). Similar devastating events in Canada peaked in 2023 due to a

64  combination of hot, dry weather conditions and human activities, including vehicle accidents,
65 recreational uses of forests, and land management practices, causing accidental ignitions

66  (Owens, 2023; Byrne et al., 2024). Lightning is the major igniting source of wildfires in

67  Canada, contributing to 85% of the total burned area every year. Additionally, unprecedented
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68  wildfires have ravaged the western US (Higuera and Abatzoglou, 2021), Siberia (Bondur et

69  al., 2020), and the Himalayas (Bhattarai et al., 2023), often exacerbated by climate change-

70  associated weather anomalies (Jones et al., 2022).

71  Wildfire dynamics is governed by the complex interplay of natural and human factors.
72 Meteorological variables, such as temperature, soil moisture, precipitation, wind, and relative

73  humidity (RH) significantly influence fuel availability and combustibility (Aldersley et al.,
74  2011; Kloster et al., 2012; Hantson et al., 2015; Knorr et al., 2016; Jones et al., 2022;

75  Senande-Rivera et al., 2022; Shi and Touge, 2022). Higher temperatures and stronger winds

76  increase wildfire risks, while precipitation and soil moisture mitigate fire spread. Vegetation
77  dynamics also play a critical role, as elevated precipitation and CO; levels enhance vegetation

78  growth, which in turn can potentially increase the availability of combustible materials (Allen

79 et al., 2024). In addition, anthropogenic land-use changes, including deforestation and

80  agricultural expansion, have transformed landscapes in ways that either amplify or suppress
81  wildfire risks. For example, agricultural expansion in South America has reduced BA in some

82  regions (Aldersley et al., 2011; Zubkova et al., 2023). These factors collectively drive the

83  spatiotemporal variability of wildfires.

84 Climate change is a dominant driver of increasing wildfire risks, with rising global
85  temperatures and more frequent El Nino-Southern Oscillation (ENSO) events leading to

86  regional temperature extremes and prolonged dry periods (Fuller and Murphy, 2006; Fasullo

87 et al., 2018). These conditions exacerbate wildfire frequency and intensity, particularly in

88  boreal and tropical forests (IPCC, 2014; Fasullo et al., 2018). For instance, Canadian fire

89  season has extended by around two weeks, starting a week earlier and ending a week later

90 compared to its pattern 50 years before (Owens, 2023). Future projections indicate heightened

91  wildfire risks due to climate-induced shifts in meteorological conditions, such as snow melt

92  timing and extended droughts (Flannigan et al., 2009; Liu et al., 2010; Veira et al., 2016; Di
93  Virgilio et al., 2019; Li et al., 2020; Jones et al., 2022). However, the interplay of

94  socioeconomic factors, including population density and gross domestic product (GDP), may

95  mitigate these risks through improved fire suppression and management measures (Kloster et

96 al., 2012; Val Martin et al., 2015; Veira et al., 2016). Studies based on Representative

97  Concentration Pathways (RCPs) suggest that while climate change amplifies fire risks, human



https://doi.org/10.5194/egusphere-2025-804
Preprint. Discussion started: 5 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

98 intervention could counterbalance these effects to some extent (Dong et al., 2022; Nurrohman
99  etal., 2024).

100  Despite these advancements, significant knowledge gaps remain in understanding the divergent
101  fire dynamics over tropics and boreal regions, their seasonal variability, and the roles of
102 vegetation and hydrological changes under future climate conditions. While several studies
103  have projected future wildfire trends and carbon emissions using various climate scenarios (e.g.,

104  Scholze et al., 2006; Knorr et al., 2016; Kloster and Lasslop, 2017; Wu et al., 2022), research

105  specifically addressing the effects of recently developed low and high warming climate
106  pathways on BA and wildfire emissions remains limited. Existing studies have primarily

107  focused on fire weather indices (Quilcaille et al., 2023) or specific mitigation strategies such

108  as solar geoengineering (Tang et al., 2023a), leaving the broader influence of climate change
109  on global wildfire patterns, independent of direct socioeconomic drivers, less explored.
110  Investigating future fire dynamics using the latest climate-fire-enabled global terrestrial system
111 model, combined with state-of-the-art climate projections, is essential to improve predictions
112 of wildfire frequency and intensity and their cascading effects on air quality, carbon cycling,

113 and climate feedback.

114  In this study, we examined how future climate change would impact global wildfires
115  throughout the 21% century, focusing on SSP1-2.6 (low-warming) and SSP3-7.0 (high-
116  warming) (hereafter referred to as SSP1 and SSP3). Using the climate projections from the
117  Community Earth System Model (CESM) database, we analyzed trends in BA and emissions
118  of key carbonaceous species to provide new insights into the spatial distribution and intensity
119  of future wildfire events. By focusing on climate-driven changes while holding land use and
120  population constant, our study isolates the effects of warming on fire dynamics, offering a
121  clearer understanding of how different climate pathways shape future wildfire risks. This
122 research highlights the potential implications for carbon emissions and informs strategies to

123 mitigate the impacts of future wildfires in a changing climate.

124 2. Methods
125 2.1 Community Land Model (CLM)

126  In this study, we used the Community Land Model version 5 (CLMS5), the land component
127  within the Community Earth System Model (CESM) (Lawrence et al., 2019; Danabasoglu et
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128  al., 2020). CLMS5 was run with active biogeochemistry and an interactive fire module (Li et al.

129 2013) to investigate the implications of climate change on wildfires and their resulting effects
130 on BA and emissions of carbonaceous species. This configuration enables vegetation to
131  respond dynamically to changes in climate conditions and elevated CO2 levels within its carbon
132 and nitrogen cycles. CLM5 operates at the plant functional type (PFT) level, simulating
133  interactions among each PFT, soil organic matter, and atmosphere, thereby capturing the

134  impacts of climate change and fires on terrestrial ecosystems.

135  We conducted model simulations at a horizontal grid resolution of 0.9° x 1.25° (latitude
136  longitude). Within each grid cell, subgrid cells defining various land cover types in CLMS5 are
137  represented, including urban, glacier, and vegetated areas. Vegetated land is further
138  characterized by 16 distinct PFTs, encompassing diverse vegetation ranging from forest to

139  grasslands and crops, and including bare land.

140 2.2 Fire module in CLM5

141  The CLMS fire module has been rigorously validated through comparisons with fire emission

142  inventories and satellite observations, and has been widely adopted in prior research (Li et al.

143  2012; Lietal., 2013; Li et al., 2017; Ford et al., 2018; Li et al., 2019; Tang et al., 2023b). The
144 CLMS fire module represents an advancement in understanding the interplay among fire

145  dynamics, vegetation, and the Earth’s climate system (Li et al., 2013). Built on a process-based

146  fire parameterization, the CLMS5 fire module accounts for four distinct fire types: (i)
147 agricultural fires in croplands, (ii) deforestation fires in tropical closed forests, (iii) peat fires,

148  and (iv) non-peat fires occurring beyond croplands and tropical closed forests (Li et al., 2012;

149  Li et al., 2013). Fire ignitions include both natural and anthropogenic sources, with lightning

150  datasets from NASA serving as the basis for natural ignitions, while anthropogenic ignitions
151  are influenced by population density and GDP, whereby higher population and GDP effectively
152 suppress fire occurrences. The module estimates the likelihood of fire occurrence by
153  considering the availability of biomass as fuel, combustibility of the fuel depending on its
154  moisture content, and presence of an ignition source, whether human-induced or from lightning.
155  Thus, BA within the CLMS fire scheme is driven by socioeconomic activities, vegetation
156  composition, and prevailing weather conditions (e.g., temperature, RH, wind, precipitation, and
157  soil moisture). Upon determination of BA, gas and aerosol emissions from fires are obtained

158  at the grid cell level.
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159 In this study, to focus on the impact of future climate change on wildfires, land use and
160  population were held constant at present-day levels, allowing only climate to evolve over time.
161  This approach thus fixes natural and anthropogenic ignition sources while permitting fuel
162  availability and combustibility to change along with future climate. Climate change accounts
163  for changes in CO; levels and precipitation, temperature, pressure, RH, wind, and radiation.
164  These changes exert direct influences on fuel availability and combustibility, shaped by
165  evolving climate conditions and vegetation characteristics. We considered two future climate
166  projections: low warming (SSP1-2.6; hereafter referred to as SSP1) and high warming (SSP3-
167  7.0; hereafter referred to as SSP3). SSP1 projects an increase of atmospheric CO» of 70 ppm
168  up to 2050, after which it stabilizes, whereas SSP3 projects a 140 ppm increase by 2050 and
169 467 ppm by 2100, relative to 2015 levels (400 ppm). Global land temperature rises sharply
170  under SSP3, with an increase of 1.6°C during the 2050s (2050—-2059 average) and 3.8°C during
171 the 2090s (2090-2099 average) compared to present-day conditions (2015-2024 average of
172 10.4°C). In contrast, SSP1 shows a temperature increase of only 1.2°C by 2050, with relatively

173  stable conditions in the later part of the century.
174
175 2.3 Model experiments

176~ We first spun up CLMS with the fire module active to steady state in 1850 using an accelerated
177  decomposition procedure and fixed pre-industrial CO, land use, and atmospheric nitrogen (N)

178  deposition (Lawrence et al., 2019). The accelerated decomposition spin-up was for about 1200

179  years as the total soil organic matter carbon in the Arctic regions required a longer time frame
180  to reach equilibrium; we considered the model fully spun up when the land surface had more
181  than 97 % of the total ecosystem carbon in equilibrium. The present-day spin-up was based on
182  a historical simulation for 1850-2014 using historical N and aerosol deposition, atmospheric
183  CO: forcing, land use change, and meteorological forcings from the Global Soil Wetness

184  Project (GSWP3vl) (Lawrence et al., 2019).

185  For future runs, we initialized CLMS in 2015 with the prescribed climate for the low and high
186  warming scenarios simulated by CESM2 for Coupled Model Intercomparison Project Phase 6
187  (CMIP6), and conducted transient simulations until 2100. For the first ten years, both scenarios
188  exhibit very similar behavior in terms of BA (SSP1: 5.18+0.37 million km?, SSP3: 5.15+0.39
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189  million km?) and emissions (Figure S1), as climate and CO: levels at the start of both scenarios
190  are nearly identical and have not yet diverged. Therefore, we considered the period from 2015
191  to 2024 for SSPI1 as representative of present-day conditions (referred to as ‘Baseline’ and
192 reported average + standard deviation, SD). Although these are transient simulations, for
193 certain analyses we selected results from 2090 to 2099 (referred to as “2090s” and reported
194  average = SD) to calculate the differences from the present-day conditions for the respective
195 climate scenario to estimate future changes. These experiments were aimed to assess the
196  isolated impacts of climate change on wildfires and emissions of air pollutants, while holding

197  anthropogenic land management constant.
198 2.4 Validation of global burned area and fire emissions

199  Our model results capture both the spatial distribution and magnitude of global BA and wildfire
200  emissions (Figure 1), demonstrating good agreement with the Global Fire Emission Database

201 (GFED) (Randerson et al., 2017; Chen et al., 2023). GFED derives estimates of BA and

202  emissions by integrating satellite-derived fire activity data with biogeochemical modeling
203  approaches. We consider both GFED4.1 and GFEDS in this validation as they use different
204  methodologies, with GFEDS accounting for small fires that are often missed by satellite sensors,

205 leading to higher BA estimates compared to GFED4.1 (Chen et al., 2023).

206  For the present day (2015-2024), CLMS5 simulates a global annual BA of 5.18+0.37 million
207  km? (mean + SD), which lies between the estimates of GFED4.1 averaged for the 2007-2016
208  (4.48+0.36 million km?) and GFEDS5 averaged for the 2011-2020 (7.31+0.39 million km?).
209  The decadal mean is calculated based on the data available in the last ten years. Our results
210 also align with historical estimates for 2001-2018, ranging from 3.9 to 5.2 million km?

211  (Lizundia-Loiola et al., 2020). Despite some biases, the model performance is robust, with a

212 normalized mean bias of +15.6% (-29.1%) and a correlation coefficient (R) of 0.64 (0.62) when
213 compared to GFED4.1 (GFEDS).

214  Emissions of key fire-related species such as total carbon (TC), black carbon (BC), organic
215  carbon (OC), and nitrogen oxides (NO,) were also compared against GFED4.1 as data are not
216  available for GFEDS (Figure 1d). Decadal averaged results show strong agreement for most

217  species, with TC emission of 2017+158 Tg yr !, closely approximating the GFED4.1 estimates
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218  of 1997+175 Tg yr-!. However, certain species, such as OC, are slightly overestimated, while

219  NO, emissions are marginally underestimated.
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221  Figure 1. Comparison of CLMS5-simulated results (2015-2024, SSP1) with the Global Fire
222  Emissions Database (2007-2016 for GFED4.1; 2011-2020 for GFEDS). Spatial distribution
223  of burned area for a) CLMS, b) GFED4.1, and c¢) GFEDS are averaged for a decade. d) Global
224  annual emissions of main fire-emitted species, including total carbon (TC), black carbon (BC),
225  organic carbon (OC), carbon monoxide (CO), ammonia (NH3), nitrogen oxide (NO.), isoprene
226  (ISOP), monoterpene (MTERP), and sulfur dioxide (SO2) are compared between CLMS5
227  (model) and GFEDA4.1 for the same time period as that of burned area.

228
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229 3. Results

230 3.1 Trends and spatial variations in burned area and carbon emissions

231  The projected impact of climate change on BA and carbon emissions shows a marked increase
232  under low and high warming scenarios. Global BA is projected to increase by +6383 km? yr!
233 under SSP1 and +7465 km? yr~! under SSP3 between 2015 to 2100 (Figure 2a), resulting in an
234  overall increase of +0.73 million km? and +0.68 million km?, respectively, by the 2090s
235 compared to the present day. These increases are particularly centered toward the higher
236  northern latitudes in both low and high warming scenarios (Figure S2). Sharp BA reductions
237  (~25%) in the tropics in high warming negate BA increases in high northern latitudes, leading
238 to a lower global average under SSP3 as compared to SSP1, which sees sharp increases in
239  tropics (Figure 2b-d). However, the overall rate of increases in BA under SSP3 is
240  approximately +1000 km? yr! higher relative to SSP1, primarily driven by sharp increases in
241  fuel supply, reduced soil moisture, and favorable meteorology, such as elevated surface

242  temperature and reductions in RH (Figure S3) (detailed analysis in section 3.2).

10
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244  Figure 2. Trend analysis of global burned area (BA) during the 21 century (2015-2100) under
245  SSP1 and SSP3 climate scenarios. In panel a), dotted lines indicate the annual variations and
246  their trends, while the solid lines indicate the 25-year moving average. The latitudinal
247  variations of BA during b) baseline (averaged 2015-2024; SSP1) and its c) absolute and d)
248  percentage future differences are shown at 5-degree moving average.

249

250  We found important differences at a regional scale. In high northern latitudes, near 60°N, where
251 tundra dominates alongside alpine forests, shrubs, and grasses, our simulations project
252  substantial BA and TC increase of over 150% in both scenarios (Figure 3a-d and Figure S4).
253  In contrast, a large regional discrepancy is observed for both BA and TC emissions over the
254 tropics (20°S—20°N) and boreal (30°N—70°N) regions (Figure 3e-h). For instance, BA regional
255  trend over boreal region shows a significant positive trend at the rate of +5237 km? yr ! under
256  SSPI1 and +8515 km? yr! under SSP3. Conversely, tropical regions show a sharp decline in
257  BA under SSP3 (-2429 km? yr!) and a more moderate decline under SSP1 (—64 km? yr!),
258  which remains statistically insignificant at 95% level. In any case, tropical fires dominate the

259  global landscape for both BA and carbon emissions, compared to boreal fires.

11
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261  Figure 3. Spatial variations of present-day land cover: (a) forest and (b) shrubs and grasses,
262  derived from the product of natural plant functional types (PCT NAT PFT) and natural
263  vegetation (PCT_NATVEGQG) fractions, summed over the relevant natural PFTs (forest: 1-8,
264  shrubs and grasses: 9-15). Percentage difference in BA [future (2090 to 2099) — baseline (2015
265 to 2024)] under (c) SSP1 and (d) SSP3 scenarios. Trend lines for (e, f) BA and (g, h) TC
266  emissions are shown for tropics and boreal regions throughout the 21% century. Dots in panels
267  cand d indicate regions with significant difference at 95% confidence interval. Lighter colors

268  of trend lines represent annual variations, while bold lines indicate a 25-year moving average.

12
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269

270  Differences in carbon emissions closely align with the pattern of BA (Figure 3, Figure S5).
271  Boreal regions emerge as the primary contributors to the overall increase in TC emissions,
272  where it increases at the rate of 4.36 Tg yr ' and 6.72 Tg yr! under SSP1 and SSP3 scenarios,
273  respectively. In contrast, the tropical region experiences a marginal difference in TC emissions
274  in both scenarios. Similar trends are observed for other carbonaceous species, including BC,
275  OC, and carbon monoxide (CO). By 2090s, fire-related carbon emissions are expected to rise
276 by 22-32% compared to the present-day levels. Notably, emissions from regions above 50°N
277  are projected to surge by more than two folds, underscoring the substantial influence of high-
278 latitude fires in shaping future global carbon budgets. In addition, the carbon emitted from
279  boreal fires may become as important as tropical fires, in terms of magnitude (~1000 Tg C yr™!)

280 by the end of the century in a high warming world.

281  Figure 4 highlights a significant shift in global fire regimes and their carbon emissions across
282  SSP1 and SSP3 scenarios. Under both scenarios, global BA shows a slight increase during
283  2050s and 2090s compared to the baseline (2020s), but regional trends differ markedly. While
284  tropical BA remains nearly stable or declines slightly, boreal BA increases significantly in both
285  cases, rising from 1.09 million km? yr~! during baseline to 1.50 million km? yr~! under SSP1
286  and 1.70 million km? yr~! under SSP3. Consequently, the boreal-to-tropics BA ratio increases
287  from 0.35 at baseline to 0.46 under SSP1 and 0.57 under SSP3, indicating the growing
288  contribution of boreal fires relative to the tropics. Similarly, TC emissions exhibit a marked
289  redistribution, with global emissions increasing from 2017 Tg yr! at baseline to 2535 Tg yr~!
290  under SSP1 and 2552 Tg yr™' under SSP3. While tropical carbon emissions decline slightly,
291  boreal emissions surge from 547 Tg yr! at baseline to 894 Tg yr~! under SSP1 and 1032 Tg
292 yr ! under SSP3. This shift is also evident in the boreal-to-tropic TC emission ratio, which
293  increases from 0.50 at baseline to 0.76 under SSP1 and 0.97 under SSP3, as well as the boreal-
294  to-global ratio, rising from 27% to 35% under SSP1 and 40% under SSP3. These trends
295  underscore the growing dominance of boreal fires in driving global carbon emissions under
296 future climate scenarios, with more pronounced increases under SSP3. The results highlight
297  the critical role of boreal fire regimes in amplifying climate feedbacks and the need for region-
298  specific fire management strategies to mitigate their disproportionate impact on the global
299  carbon cycle. The interrelationships among BA, carbon emissions, and meteorological factors

300 are further discussed in subsequent sections.

13
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302  Figure 4. Present day (2020s: 2015-2024) and future (2050s: 2050-2059; 2090s: 2090-2099)
303  decadal mean of burned area (BA) and total carbon (TC) emissions across global, tropics (20°S-
304  20°N), and boreal (30°N-70°N) regions (bar-plot) under low (SSP1) and high (SSP3) warming
305  scenarios. The ratio of BA and TC emissions against tropics/global, boreal/global, and
306  boreal/tropics is presented as line plots, which show the increasing contribution of boreal

307  region on BA and TC emissions.
308

309 3.2 Key drivers of burned area in future climates

310  To identify the main factors influencing climate-driven wildfires, we analyzed the correlations
311  between BA and meteorological factors, vegetation dynamics, and carbon emissions. We found
312  strong correlations of BA with meteorological variables, total vegetation carbon (TOTVEGC),
313  and TC emissions for both SSP1 (Figure 5) and SSP3 (Figure S6) scenarios. The Pearson
314  correlation coefficient analysis was performed on detrained data using monthly data from 2015

315  to 2100 for each grid. This analysis shows a significant positive correlation between BA and
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316  surface temperature (R > 0.6), emphasizing the role of rising temperatures in driving BA
317  increases globally. A positive correlation is also observed between BA and total vegetation
318  carbon, particularly in boreal regions where vegetation growth is constrained by temperature

319  and water availability.

320
d) Precipitation & - - h) TOTVEGC
-0.8 -0.4 0.0 0.4 0.8
321 Cor. coef. (R) with Burned Area

322  Figure 5. Pearson correlation (R) on monthly time series data (2015 to 2100) between burned
323  area (BA) and (a) TC, (b-g) meteorological variables (2-m surface temperature, 2-m relative
324  humidity (RH), precipitation, 10-cm soil water, 10-m wild velocity, and climate water
325  availability (CWA = precipitation — evapotranspiration)), and (h) total vegetation carbon
326 (TOTVEGC) under SSP1 scenario. Only regions with a 95% significance level are shown.

327

15



https://doi.org/10.5194/egusphere-2025-804
Preprint. Discussion started: 5 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

328  Conversely, BA shows a negative correlation with surface RH, 10-cm soil moisture, and
329  climate water availability (CWA = precipitation — evapotranspiration). In tropical regions,
330 elevated precipitation and soil moisture reduce fire risks by decreasing fuel combustibility
331  through higher soil moisture content. Interestingly, in boreal regions, precipitation exhibits a
332  positive correlation with BA, as it enhances vegetation growth, increasing the availability of
333  fuel. However, in tropical regions, where fuel is already abundant, increased precipitation
334  primarily raises soil moisture, further suppressing fire activity rather than promoting it. These
335 contrasting effects of precipitation on fuel availability (in boreal regions) and combustibility
336  (in tropical regions) are crucial in shaping BA and carbon emissions. Wind speed has mixed
337  effects, with higher winds enhancing fire spread in some areas, while in northern latitudes, cold,

338  moist winds act to suppress BA.

339  The spatial distribution of BA and meteorological variables confirms these trends (Figure S3).
340 Boreal regions experience the largest BA increases due to rising temperatures, reduced RH,
341  and declining soil moisture. In contrast, tropical regions show a decrease in BA as increased
342  precipitation dampens fire activity. These patterns highlight the complex, region-specific

343  interactions between climate, vegetation, and fire dynamics.

344  Our analysis shows a significant correlation of TC with BA at each grid point, with R > 0.80
345  across most regions (Figure 5). Further analysis of the differences in carbonaceous species
346  also corroborates the robust correlation with differences in BA (0.56 < R < 0.71, p < 0.05;

347  Figure S7), underscoring the synergetic effect of BA on carbon emissions.

348  3.3. Seasonality of wildfires

349  Distinct seasonal variations in BA and wildfire emissions are observed for both present-day
350  conditions and future climate forcings (Figure 6, Figure S8). The most substantial increase in
351  BA and carbon emissions occur during the boreal summer (June to August), particularly in the
352  Northern Hemisphere, including regions such as the western United States, Canada, and Russia
353  (Figure S9). In the Southern Hemisphere, BA increases are predominant during its warmer
354  periods (September to February), most notably in southern Africa and Australia. Conversely,
355  tropical regions experience a sharp decline in BA primarily from December to March under
356  SSP3, while SSP1 shows an increase during the same period, highlighting the varied regional
357 response to climate change. Among these seasonal variations, boreal regions exhibit a

358  pronounced rise in both BA and carbon emissions during the summer months, and the fire
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season may potentially be extended by an additional month by 2100 in temperate latitudes (30-
50°N) under high-warming conditions (SSP3).
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Figure 6. Latitudinal monthly variations in burned area and total carbon emissions at baseline
(2015-2024 average) and their future (2090-2099 average) differences in SSP1 and SSP3.

To further investigate the drivers behind the sharp rise in BA and carbon emissions in boreal

regions, we conducted a detailed analysis focusing on both summer (Figure 7) and winter

seasons (Figure S10). Our results show a pronounced seasonal contrast, with the largest BA

increases occurring during the boreal summer months. During this period, several climatic

factors converge to create optimal wildfire conditions: higher temperatures, increased

vegetation productivity, reduced RH, and lower soil moisture. These factors, especially in

boreal forests, amplify fire outbreak risks. Increased vegetation, while potentially serving as a

carbon sink, paradoxically fuels more intense fires under drier, warmer conditions.

17



https://doi.org/10.5194/egusphere-2025-804
Preprint. Discussion started: 5 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

SSP1 SSP3

a) Burned Area

c) Burned Area

e) Total Carbon

e — | —
—100000 0 100000 —100000 0 100000

)

k)

10-m Wind

| — [ —
374 . . 3 —10000 0 . . . —10000 0

375  Figure 7. The 2090s fire season (JJA) anomaly (relative to the present day) for modeled burned

376  area, number of fires (NFIRE), BC emissions, meteorology, and total vegetation carbon
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377 (TOTVEGC) in the boreal region (>40°N) for SSP1 and SSP3. Dots indicate regions with a
378  95% significance level.

379

380 Both SSP1 and SSP3 scenarios predict a significant rise in boreal wildfires, with the increase
381  notably more severe under SSP3, where heightened temperatures result in steeper declines in
382 RH and CWA. Elevated temperatures exacerbate evapotranspiration, leading to drier
383  vegetation and surface conditions that further amplify fire risks. In contrast, the winter season
384  exhibits minimal differences in BA, despite rising temperatures and reduced RH. Extreme
385  winter cold effectively suppresses wildfire ignition, regardless of potential climatic shifts.
386  Elevated soil moisture and CWA during winter, combined with frozen ground and snow cover,
387  limit fire activity, as projected warming remains insufficient to reach the threshold required to

388  sustain fire during winter.

389  Spatial analysis reveals that the most significant increases in BA and fire emissions occur in
390 boreal Eurasia, where temperature anomalies are especially pronounced. This region shows
391 large areas of intensified fire activity, with isolated pockets of reduced BA under SSP3,

392  possibly due to increased winter precipitation or soil moisture that offsets fire risk.

393  The importance of various environmental factors driving boreal summer wildfires across
394  northern latitudes (30°N to 70°N) was analyzed using three machine learning models —
395 XGBoost, LightGBM, and Random Forest (Figure 8) — under SSP1 and SSP3. All models
396  consistently identify 10-cm soil water content (which influences fuel availability and dryness)
397  and vegetation carbon (which affects both canopy and surface fuel loads) as primary predictors
398  of wildfire activity. While CLM5 does not explicitly simulate dead fuel moisture, lower soil
399  moisture is often associated with drier fuels, increasing fire susceptibility. However, the
400 relative importance of these variables varies: XGBoost and LightGBM attribute similar
401  weights to soil water and vegetation carbon, whereas Random Forest assigns significantly
402  higher importance to these factors, especially vegetation carbon in SSP1 and soil water in SSP3.
403  Other factors such as RH and 2-m air temperature, show moderate important across models,
404  while wind speed, precipitation, and CWA play a smaller role. These findings highlight the
405  critical role of vegetation and soil moisture in determining wildfire susceptibility in boreal

406  summer, although the influence of secondary factors varies with the model used.

19



https://doi.org/10.5194/egusphere-2025-804

Preprint. Discussion started: 5 March 2025
(© Author(s) 2025. CC BY 4.0 License.

407

408
409
410

411
412
413
414
415
416
417
418
419
420
421
422

a) SSP1_JJA (30°N to 70°N) - XGBoost b) SSP3_JJA (30°N to 70°N) - XGBoost
10-cm soil water 27.1% 10-cm soil water 32.6%
Total Vegetation C 21.2% Total Vegetation C 22.7%
2-m RH 17.0% 2-m RH 15.9%
2-m Air Temp. 14.2% 2-m Air Temp. 9.9%
10-m wind speed 11.1% 10-m wind speed 8.9%
Precipitation 4.9% CWA 5.3%
CWA 4.5% Precipitation 4.8%
5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Feature Importance (%) Feature Importance (%)
C) SSP1_JJA (30°N to 70°N) - LightGBM d) SSP3_JJA (30°N to 70°N) - LightGBM
Total Vegetation C 22.3% Total Vegetation c{ 22.6%
2-m RH 17.3% 10-cm soil water | 17.6%
2-m Air Temp. 16.4% 2-m RH{ 17.1%
10-cm soil water 16.2% 10-m wind speed| 13.1%
10-m wind speed 12.4% 2-m Air Temp. | 12.5%
CWA 8.2% cwA| 8.9%
Precipitation 7.3% Precipitation { 8.3%
5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Feature Importance (%) Feature Importance (%)
e) SSP1_JJA (30°N to 70°N) - Random Forest ) f) ) SSP3_JJA (30°N to 70°N) - Random Forest )
Total Vegetation C 38.0% 10-cm soil water{ 38.7%
10-cm soil water 34.3% Total Vegetation C{ 38.3%
2-m RH 12.9% 2:m RH 12.6%
2-m Air Temp. 9.3% 2-m Air Temp. | 5.4%
10-m wind speed 5.0% 10-m wind speed{ 4.3%
Precipitation{ 0.3% Precipitatiun{ 0.4%
CWA{ 0.2% CWA{ 0.1%
5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Feature Importance (%) Feature Importance (%)

Figure 8. Feature importance analysis of environmental drivers of wildfire activity during
boreal summer (JJA) over northern latitudes (30°N to 70°N) using (a, b) XGBoost, (c, d)
LightGBM, and (e, f) Random Forest machine learning model under SSP1 and SSP3 scenarios.

This analysis underscores the need for a deeper understanding of the interplay between climatic
drivers, vegetation dynamics, and fire behaviors to mitigate boreal wildfire risks under future
climate scenarios. While machine learning models identify soil water content and vegetation
carbon as the most critical predictors of wildfire activity, rising surface temperatures play an
indirect yet pivotal role. Elevated temperatures exacerbate evapotranspiration, reduce RH, and
lower soil moisture, thereby intensifying fire risk. These cascading effects highlight the
importance of considering temperature as a key enabling factor that interacts with vegetation
and hydrological conditions to drive wildfire dynamics. Additionally, the positive correlation
between BA and vegetation carbon suggests that future fire management strategies should
consider shifts in vegetation growth patterns driven by changing climatic conditions,

particularly in boreal ecosystems where temperature and water availability are limiting factors.
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423  Under low and high warming climates, the projected sharp rise in boreal wildfires emphasizes
424  the necessity of comprehensive fire management strategies that address the complex links
425  Dbetween climate and vegetation, as well as the seasonality of these interactions. The expected
426  increase in high-latitude fire activity and associated carbon emissions will significantly
427  contribute to the global carbon budget. Targeted mitigation efforts, such as prescribed burns or
428  enhanced fire suppression during critical periods, will be crucial. Furthermore, the cascading
429  impacts of wildfires on carbon cycling and atmospheric composition — including increased
430  emissions of BC and OC — highlight the urgency of adaptive strategies. These strategies must
431  account for the feedbacks between climate change, vegetation growth, and fire behaviors to

432  effectively manage future wildfire risks.

433

434 4. Conclusions and discussion

435  This study highlights a significant shift in wildfire dynamics, particularly in boreal regions
436  under future climate scenarios using a state-of-the-art fire-enabled global terrestrial system
437  model that explicitly simulates interactive fire with active biogeochemistry. Our findings
438 indicate that boreal regions, especially around 60°N, could experience a staggering increase in
439  BA by up to 200% under high-warming scenarios (SSP3-7.0). This increase is primarily driven
440 by reduced soil moisture and an abundance of vegetation carbon, creating dryer and more
441  combustible conditions. These results align with previous studies predicting an intensification
442  of Arctic fires due to climate-induced extreme fire weather, increased lightning activity, and

443  drier fuel conditions (Mccarty et al., 2021). Furthermore, Abatzoglou et al. (2019) explored

444  that regions experiencing heightened fire weather could double at 3°C warming compared to
445  2°C above preindustrial levels, emphasizing the significant influence of anthropogenic climate

446  change (Turco et al., 2023).

447  Our results also emphasize the role of other meteorological variables in modulating fire activity.
448  While rising temperatures and CO»-driven vegetation growth contribute to heightened fire risks,
449  wind speed and precipitation exert secondary influences. Stronger wind speed at high latitudes
450  can suppress fire spread by transporting colder, moist air, whereas increased precipitation can
451  paradoxically increase fire risk by stimulating vegetation growth in water-stressed areas,
452  thereby increasing fuel loads. These results are consistent with historical wildfire studies

453  (Zheng et al., 2023), which documented that warmer and drier conditions in boreal forests
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454  contributed to the rapid wildfire expansion from 2000 to 2020. Our findings further extend
455  these insights into the future, demonstrating how climate and vegetation changes will continue

456  shaping wildfire trends.

457  The projected intensifications of wildfires in boreal regions has significant ecological and
458  climatic implications. Increased fires in sub-alpine regions reduce species diversity, leading to

459  greater forest homogeneity and disrupting entire ecosystems (Cassell et al., 2019; Halofsky et

460  al., 2020). The transition of boreal forests from carbon sinks to net carbon sources due to

461  increased fire emissions could further amplify warming trends through enhanced greenhouse

462  gas concentrations and BC deposition on Arctic ice, accelerating ice melt (e.g., Liu et al., 2014;

463  Meccarty etal., 2021; Virkkala et al., 2025). Furthermore, the degradation of boreal ecosystems

464  threatens biodiversity, disrupts regional hydrological cycles, and deteriorates air quality due to
465 increases in particulate and ozone precursors. These findings underscore the necessity for
466  integrating wildfire dynamics into climate policy frameworks to effectively mitigate future
467  risks.

468  While boreal wildfires exhibit a strong upward trend, tropical regions exhibit a contrasting

469  response, with either stable or decreasing trend in BA under future climate scenarios. This

470  pattern is consistent with previous studies (Veira et al., 2016; Jones et al., 2022), which
471  reported increasing BA at higher latitudes but declines in the tropics. Climate driven
472  alternations in temperature and precipitation patterns introduce uncertainties in fire regimes

473  across different biomes, highlighting the complexity of climate-fire interactions (IPCC, 2014;

474  Fasullo et al., 2018).

475  Seasonal variations further illustrate the complexity of factors governing wildfire dynamics.
476  Despite rising temperatures in boreal summer and winter, the sharp rise in BA and carbon
477  emissions in the boreal region is confined to summer, as winter wildfires are suppressed by
478  persistent cold temperatures and snow cover. Additionally, in temperate regions (30-50°N),

479  high warming scenario extended the fire season, leading to longer fire durations (Senande-

480 Rivera et al., 2022). Moreover, in the recent two decades, the extreme wildfire events have

481 increased by twofold, particularly in boreal and temperate conifer regions (Cunningham et al.,
482  2024). These findings emphasize the need for seasonally and regionally tailored fire

483 management strategies. In temperate, populated regions, targeted interventions such as
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484  controlled burns, thinning or fuel reductions, and soil moisture enhancement can mitigate
485  wildfire risks. However, in sparsely populated boreal regions, where large-scale fires occur in
486  remote landscapes with limited accessibility, direct intervention is often challenging due to
487  larger fire size and lower government priority. Thus, integrating wildfire risks into climate
488  impact assessments, carbon sequestration estimates, and long-term climate feedback analysis
489  is crucial for understanding the broader implications of boreal wildfires. Predictive models
490 incorporating wind speed, precipitation patterns, and fuel accumulation dynamics can further
491  aid in resource allocation and preparedness efforts. A nuanced approach that considers both
492  management feasibility and the role of boreal fires in global climate systems will be essential
493  for mitigating their impacts on air quality, biodiversity, and human health under future climate

494  scenarios.

495  Several limitations of this study warrant further investigation. Our model primarily focuses on
496 future climate change as the key driver of wildfires, but other influencing factors, such as land-
497  use changes and population growth, are not fully accounted for (kept constant to the present
498 day), which also influence wildfire dynamics. The CLM5 model, with its relatively coarse
499  spatial resolution (~100 km) struggles to capture short-term and small-scale fires, which can
500 have significant ecological and atmospheric impacts. Additionally, natural ignitions are
501  prescribed based on NASA lightning frequency data averaged from 1995 to 2011, limiting the
502  scope of future variability. Future studies should integrate interactive lightning simulations that
503  evolve with changing climate conditions. Improved representations of fire behavior, vegetation
504  dynamics, two-way feedback mechanisms, and socioeconomic drivers will be essential to
505 comprehensively understand wildfire risks in a changing climate. Coupling fire models to
506  atmospheric models can also enhance our understanding of how wildfires influence regional

507  meteorology and, in turn, how these altered conditions impact fire activity.

508 Our findings have broader implications for sustainable forestry and global climate policies.
509 Balancing biomass harvesting with carbon sequestration goals is crucial for maintaining
510 ecosystem resilience. Strengthening policies that limit deforestation and promote
511 afforestation/reforestation in fire-prone regions can reduce fire risks while enhancing carbon
512  storage. A comprehensive understanding of climate-fire interactions is essential for developing

513  robust adaptation and mitigation strategies that align with global sustainability objectives.

514
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